The X-ray crystal structure of human beta-hexosaminidase B provides new insights into Sandhoff disease.

نویسندگان

  • Timm Maier
  • Norbert Strater
  • Christina G Schuette
  • Ralf Klingenstein
  • Konrad Sandhoff
  • Wolfram Saenger
چکیده

Human lysosomal beta-hexosaminidases are dimeric enzymes composed of alpha and beta-chains, encoded by the genes HEXA and HEXB. They occur in three isoforms, the homodimeric hexosaminidases B (betabeta) and S (alphaalpha), and the heterodimeric hexosaminidase A (alphabeta), where dimerization is required for catalytic activity. Allelic variations in the HEXA and HEXB genes cause the fatal inborn errors of metabolism Tay-Sachs disease and Sandhoff disease, respectively. Here, we present the crystal structure of a complex of human beta-hexosaminidase B with a transition state analogue inhibitor at 2.3A resolution (pdb 1o7a). On the basis of this structure and previous studies on related enzymes, a retaining double-displacement mechanism for glycosyl hydrolysis by beta-hexosaminidase B is proposed. In the dimer structure, which is derived from an analysis of crystal packing, most of the mutations causing late-onset Sandhoff disease reside near the dimer interface and are proposed to interfere with correct dimer formation. The structure reported here is a valid template also for the dimeric structures of beta-hexosaminidase A and S.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Apoptotic cell death in mouse models of GM2 gangliosidosis and observations on human Tay-Sachs and Sandhoff diseases.

Tay-Sachs and Sandhoff diseases are autosomal recessive neurodegenerative diseases resulting from the inability to catabolize GM2 ganglioside by beta-hexosaminidase A (Hex A) due to mutations of the alpha subunit (Tay-Sachs disease) or beta subunit (Sandhoff disease) of Hex A. Hex B (beta beta homodimer) is also defective in Sandhoff disease. We previously developed mouse models of both disease...

متن کامل

Structure and distribution of an Alu-type deletion mutation in Sandhoff disease.

Sandhoff disease is a recessively inherited lysosomal storage disease resulting from a deficiency of beta-hexosaminidase activity. The enzyme occurs in two major forms, beta-hexosaminidase A, composed of an alpha- and beta-subunit and beta-hexosaminidase B, composed of two beta-subunits. Both isozyme activities are deficient in Sandhoff disease, owing to mutations of the HEXB gene encoding the ...

متن کامل

Sandhoff Disease without Hepatosplenomegaly Due to Hexosaminidase B Gene Mutation

Sandhoff disease is a neurodegenerative disease caused due to deficiency of hexosaminidase (HEX) A and B. A 1-year-old male child presented with regression of milestones, exaggerated startle response, decreased vision, and seizures from 6 months of age. The child had coarse facies without hepatosplenomegaly. Serum levels of β hexosaminidase total (A + B) were low. Genetic testing for Sandhoff d...

متن کامل

Dramatically different phenotypes in mouse models of human Tay-Sachs and Sandhoff diseases.

We have generated mouse models of human Tay-Sachs and Sandhoff diseases by targeted disruption of the Hexa (alpha subunit) or Hexb (beta subunit) genes, respectively, encoding lysosomal beta-hexosaminidase A (structure, alpha) and B (structure, beta beta). Both mutant mice accumulate GM2 ganglioside in brain, much more so in Hexb -/- mice, and the latter also accumulate glycolipid GA2. Hexa -/-...

متن کامل

Effective gene therapy in an authentic model of Tay-Sachs-related diseases.

Tay-Sachs disease is a prototypic neurodegenerative disease. Lysosomal storage of GM2 ganglioside in Tay-Sachs and the related disorder, Sandhoff disease, is caused by deficiency of beta-hexosaminidase A, a heterodimeric protein. Tay-Sachs-related diseases (GM2 gangliosidoses) are incurable, but gene therapy has the potential for widespread correction of the underlying lysosomal defect by means...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 328 3  شماره 

صفحات  -

تاریخ انتشار 2003